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An asymptotic scheme is derived for calculating values of the ‘reflected ’ Stokeslet-field 
velocity dyadic V and its gradient V V  back at the Stokeslet location for situations 
in which this singular point lies in close proximity to the wall of an infinitely long 
circular cylinder. The asymptotic formulas furnished by this scheme permit 
calculations of first- and second-order wall effects in the non-dimensional parameter 
K = a/Ro (a = characteristic particle radius, Ro = cylinder radius) upon the Stokes 
resistance of a particle of arbitrary shape, location and orientation when translating 
and/or rotating near the wall of an otherwise quiescent fluid-filled or fluid-surrounded 
circular cylinder. This reflection-type calculation is applicable for circumstances in 
which the inequalities K Q 1 and 1 -8 Q 1 are each separately satisfied, while 
simultaneously ~ l ( 1 - P )  Q 1. (Here /3 = b/Ro is the fractionally eccentric Stokeslet 
location, or equivalently the centre of reaction of the particle, with b its distance from 
the tube axis.) The main result of this paper is the development of the pair of 
asymptotic wall-correction formulas 

to particle resistance, with W E  W,, and VWr Wkl,I respectively the non-dimensional 
normalized wall-effect dyadic and its gradient at  the Stokeslet location 8. The 
numerical, rational fraction, 8-independent, nCjk and n D j k l  Coefficients (n = 0,1,2) 
appearing above are evaluated by solving a recursive sequence of Stokes-flow 
boundary-value problems in the semi-infinite fluid domain bounded by a plane wall. 
These simple asymptotic formulas are shown to agree excellently in the range near 

= 1 with existing values derived from the exact solution of the original circular- 
cylinder boundary-value problem, involving tedious infinite-series summations of 
complicated Bessel-function integrande extended over infinite integration domains. 
Generalizations of the scheme to particle motion in the space external to a circular 
cylinder is briefly sketched, as too is the case of cylinders of non-circular cross-section. 

1. Introduction 
Cox & Brenner (1967) demonstrated that the hydrodynamic force F and torque 

Go (about some arbitrary point 0 fixed in the particle) exerted on a particle moving 
in proximity to a wall bounding an otherwise quiescent Stokes flow may be expressed 
correctly to any order in K by a sum of tensor products of various members of sets 
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of respective material particle and wall tensors, scalarly multiplied by the translational 
and angular velocities Uo and 52 of the particle. For a prescribed particle, the material 
particle tensors (which are constant relative to body-fixed axes locked into the 
particle) depend solely upon the particle’s geometric properties - namely its size a 
and shape, as well as upon the explicit location of 0 within the particle. Likewise, 
the material wall tensors (which are constant relative to space-fixed axes fixed in the 
tube walls) depend solely upon the tube radius R, and the lateral distance b of 0 
from the tube axis. 

Hirschfeld, Brenner & Falade (1984) demonstrated that the material wall tensors 
required to derive all terms in the expansions of F and Go, up to and including terms 
O ( K ~ ) ,  could be obtained entirely from knowledge of the fundamental solution of the 
quasistatic Stokes equations for an arbitrarily oriented Stokeslet in the tube 
positioned at 0, the latter representing the instantaneous position of, say, the centre 
of reaction of the moving particle. Evaluation of the requisite velocity dyadics and 
their gradients necessitates summing an infinite series of infinite integrals (whose 
integrands entail lengthy arguments of modified Bessel functions). Divergence 
problems near p = 1 lead to obvious computational difficulties when the particle 
centre approaches too closely to the tube wall. Yet the region p-. 1 is very important 
hydrodynamically, since wall effects upon the hydrodynamic force and torque are 
largest in this region. 

It has long been established (Happel & Brenner 1965; Hirschfeld 1972; Bungay 
& Brenner 1973a) that as p-. 1 the values of the material wall tensors for a circular 
cylinder approach those for a plane wall tangent to the cylinder surface. More 
precisely, each plane-wall tensor represents the leading term of an asymptotic 
expansion of its cylinderical counterpart for I 1 - p 1 6 1.  In this paper we provide 
the next two higher-order terms in these expansions by employing the regular 
perturbation scheme initiated by Bungay & Brenner (1973~) .  Calculation of these 
asymptotic terms involves solving a sequence of half-space Stokes-flow boundary- 
value problems, satisfying prescribed boundary conditions on a plane wall. The 
appropriate boundary conditions at a given order of the perturbation scheme derive 
recursively from knowledge of lower-order perturbation fields in the sequence. 

The initial problem of the sequence, which also yields the lowest-order asymptotic 
term, is that of determining the plane-wall Stokeslet-field velocity dyadic. Beginning 
with the original work of Lorentz (1896), this problem has been treated in a variety 
of contexts by Maude .(1963), Berker (1963), Wakiya, Darabaner & Mason (1967), 
Hirschfeld (1972), Aderogba (1977) and Hasimoto & Sano (1980). Subsequent 
coefficients in the asymptotic expansion derive recursively, as previously indicated. 
Solution of the necessary Stokes-flow plane-wall boundary-value problems is effected 
by constructing a representation involving ‘ Papkovitch-Neuber ’ potentials (in the 
manner of Aderogba 1977; Falade 1982), which potentials are then used to obtain 
the desired particular solutions from the general solution of this class of Stokes-flow 
problems. 

The regular perturbation scheme and resulting sequence of perturbation equations 
are presented in $2. In $3 we describe the method of solution of these perturbation 
equations, and calculate from them the nCjk and ,,Djkl wall-effect tensor coefficients. 
In the range 0.90 < /3 < 0.99 numerical values furnished by these asymptotic 
expansions are compared in $4  with the extremely accurate results tabulated by 
Hirschfeld et al. (1984). Excellent agreement is obtained. Generalization to cylinders 
of other cross-sectional configurations is also briefly discussed in $4, as too is 
application of the asymptotic analysis to the region external to a cylinder. 
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FIGURE 1. Stokeslet singularity 0 within a circular tube of radius R,. With (zi, xi, zi) a set of 
Cartesian axes originating along the tube axis (at &') the singularity lies at (b ,  0 , O ) .  A second set 
of (dimensionless) Cartesian axes (zl, za, zQ), parallel to the first, originates at the wall (at &) such 
that Q', 0 and Q all lie along the same line. In this non-dimensional system the location of the 
singularity is at ( - y , O , O ) ,  where the (assumed) small parameter y = (R,-b)/R, 4 1 represents 
the fractional distance of the Stokeslet from the wall. 

Results presented in this paper are limited to situations in which the particle 
centre is relatively distant from the wall compared with the particle size - namely 
a / ( R , - b )  4 1. Equivalently, ~l(1-6) 4 1. In contrast, Bungay t Brenner (1973b)  
treat the case of a sphere of radius a for which ~l(1-6) = O(1) (with K 4 1 and 
1 - p  < l ) ,  though in a slightly different physical context from that considered herein. 
Finally, we note that Tozeren (1982) employs a regular perturbation technique for 
estimating the torque on a sphere of arbitrary size that is translating and rotating 
at a slightly off-axis location in the cylinder interior. 

2. Formulation 
Consider an arbitrarily oriented Stokeslet P positioned at  (b ,  0 , O )  (hereinafter 

designated as point 0) relative to a right-handed Cartesian coordinate system 
(zi,xi,xi) with origin &' lying along the axis of a circular cylinder of radius R,, as 
in figure 1. Let b and R, be such that the ratio = b / R ,  is of order unity. Velocity 
and pressure fields (u ,p )  at an arbitrary point within the fluid-filled cylinder are 
assumed to satisfy Stokes' equations 

,uV'zv-V'p+F6'(r') = 0, ( 2 . l a )  

V'.V = 0, ( 2 . l b )  

along with boundary conditions 

v = 0 on xi2+xi2 = Ri ( 2 . 2 a )  

and u+O as 1xiI+oo. (2 .26 )  
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Here the (dimensional) Dirac delta function #(r’) satisfies 
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J s’(r’) dx; dx; dxi = 1 ,  

where region V’ includes the Stokeslet. Position vector r’ originates a t  the singularity 
(b, O , O ) ,  i.e. I r’ I = {(xi - b)2 + xL2 + xi2}:. 

In place of the previous coordinate system it is convenient to introduce a stretched 
non-dimensional right-handed Cartesian coordinate system 

(21,x2,23) = (x;--o,x;,xj)/y-, (2.3) 

(in which y = 1 -b), with origin Q situated at the wall such that Q’, 0 and Q all lie 
along the same radius vector (see figure 1). In this new coordinate system the 
Stokeslet is situated at  the point ( - 1,0,0). Inasmuch as the original Cartesian system 
spans the range 

along with - GO < xi < GO, the current non-dimensional system spans the range 

- R o < x ; < R 0 ,  - R o < ~ ; < R o ,  

1 1 < x1 < 0, -- 
2 

Y Y < x2 - I  Y 
-- 

in addition to - GO < x3 < m. Moreover, in the current system the surface of the 
circular cylinder is described by the two branches 

(2.5) 

of the generating equation f(xl, x2) = 0. 
In terms of these new coordinates, the original system of equations (2.1) and (2.2) 

may be rendered parameter-free (except for the parameter y ) by defining dimensionless 
dyadic ‘velocity’ and vector ‘pressure’ fields (V,  P) such that 

u = (yRop)-’ V * F ,  p = ( Y R , ) - ~ P * F .  (2.6a, b) 

We substitute (2.3) and (2.6) into (2.1) and (2.2) and use the fact that F is  an arbitrary 
vector to obtain the system of dimensionless equations 

V2V-VP+/6(r)  = 0, ( 2 . 7 ~ )  

v . v = o ,  (2.7b) 

z1 = - { 1 & (1 - y2x$}/y 

V = O 

V = O 

on x1 = -{ 1 - (1 -y2x$}/y, 

on x1 = -{I + (1  -yZx$}/y, 

(2.8a1 ) 

(2.8%) 

V+O as1x31+co (2.8b) 

governing the essentially purely geometric fields (V ,  P). Only the scalar parameter 
y appears in this system. Here / is the dyadic idemfactor, while r emanates from the 
singularity ( - 1,0,0) ; explicitly, I r I = {(xl + 1)2 +xi + xf}:. Henceforth all refer- 
ence to points and surfaces will be made relative to the (xl, x 2 ,  x,)-system. Note that 
the non-dimensional Dirac delta function appearing in ( 2 . 7 ~ )  is defined such that 

~VB(r)dz,dx2dx3 = 1, 

for r included in the volumetric domain V .  
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2.1. Perturbation equations 

Equations (2.7)-(2.8) constitute the exuct system of differential equations and 
boundary conditions governing the fluid motion created by the presence of the 
Stokeslet in the tube. What follows is an asymptotic solution for the small-parameter 
case y 4 1 .  

2.1.1.  Expansions for V, P 

expansions 
Subject to a posteriori verification, we assume the validity of the power-series 

v =  ov+ylv+y22v+y33v+..., (2 .9)  

P = oP+y 1P-k y2 2P-k y3 3P+. . . , (2.10) and 

wherein the perturbation fields (,V, ,P) (n = 0, 1 , 2 ,  ...) are each independent of y .  

2.1.2. Transfer of boundary conditions 

the cylinder wall surface yield respectively 
Binomial expansions for small y of the two branches (2 .5)  of the equation describing 

x1 - - $ y x ; - ~ 3 x ; - ~ x ; - ~ ' x ~ + . . .  ( 2 . 1 1 ~ )  

and x1- - 2 / y + W ) .  (2.11b) 

In the limit y+O the first of these becomes the plane z1 = 0, whereas the second 
becomes the region x1 -+ - 00 infinitely distant from this plane. In  this same limit 
the domain (2 .4)  spanned by x1 and x2 covers the semi-infinite region - 00 < z1 < 0 
and - 00 < x2 < 00. As a consequence of these facts, in the limit y 4 1 the boundary 
condition ( 2 . 8 ~ ~ )  in conjunction with (2.9) requires that, for n = 0, 1 ,  2 ,  ..., 

,V+O asxl+-m. ( 2 . 1 2 ~ )  

In addition, the boundary condition ( 2 . 8 ~ ~ )  may be transferred to the plane z1 = 0 
by expanding V(zl, x2, x3) at the cylinder surface in a Taylor series about x1 = 0 using 
(2.11 a ) .  With use of (2 .9) ,  this leads to replacement of ( 2 . 8 ~ ~ )  by the requirement 
that (in Cartesian tensor comma notation for derivatives) 

0 = ov(o, x2, z3)+y[1v(0, 2 2 ,  x3)-ix:oy 1(0,%, X3)l 

+y2[2v(o, x 2 ,  x3)-4x; lV, z2, x3)-ixi Ov,  11(0,22, X3)I 

+Y3[3V(O,x2,X3)-ix::2V, 1 ( 0 , ~ 2 , X 3 ) - - - i 4  lV, 11(0,X2,X3) . 
ov, 111(o,x2,z3)1 -k * (2.12b) 

Equations (2.12a, b )  provide a satisfactory asymptotic approximation of the exact 
boundary conditions (2 .8a1,  a,) for circumstances in which y = 1 - B  4 1 ; that is, 
where the Stokeslet is very near to the wall compared with the tube radius. 

We substitute (2 .9) ,  (2.10) and (2.12) into (2 .7)  and (2.8), collect together terms 
of like order in y ,  and equate to zero each such resulting set of terms. This procedure 
yields the following sequential sets of differential equations and boundary con- 
ditions to be solved in the semi-infinite region - 00 < x1 < 0, -00 < x2 < 00, 

- m < x 3 < 0 0 :  
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V20V-VoP+/6(r) = 0, v.,v= 0, (2.13a, b )  

,V= 0 onx,  = 0, ,V+O as W+co;  (2.14a, b )  

Jirst-order eqwctions 

v2 ,v- v ,P = 0, v * ,v = 0, (2.15a, b)  

,V = +xioV, , on xl = 0, ,V+O as W+ co ; (2.16a, b)  

second-order equations 

VZ2V-V2P = 0, V.,V = 0, (2.17a, b)  

2 v= ~ x ~ , ~ , , + ~ x ~ , ~ , , ,  onx, = 0, ,v+o asW+co; ( 2 . 1 8 ~ ,  b) 

third-order equations 

V2,V-V3P = 0, v.,v = 0, (2.19a, b)  

I n  the preceding, W simultaneously denotes both a hemispherical region and its 
radius, centred at the origin Q of the (x,, x 2 ,  x,)-coordinate system, and lying in the 
semi-infinite region occupied by the fluid. In  the limit where the radius 9 tends to 
infinity, and to dominant terms in y ,  the origin of this hemispherical region may, when 
convenient, be chosen to  be a t  the singularity 0 rather than at Q .  

The zeroth-order equations (2.13) and (2.14) may be further delineated into two 
companion sets. One set defines the fundamental unbounded Stokeslet field (,VO, ,PO), 
satisfying (2.13) and (2.14b), but not ( 2 . 1 4 ~ ) .  The other defines the 'reflection' (,P, 
,P1) of this fundamental field from the plane x1 = 0 - corresponding to the solution 
of the system of equations 

v20\p-voP' = 0, V.,V' = 0, (2.21a, b )  

,P=-,VO o n x , = 0 ,  ,W+O asW+oo. (2.22a, b )  

Thus the complete reflected fields (V,, PR) of the singularity may be expressed as 
the sums 

VR = ov'+y,v+y22v+ ... (2.23) 

and PR = oP'+ y1P+y22P+... . (2.24) 

3.  Solutions 
A general solution of the pair of differential equations 

V2V-VP = 0, v *  v = 0, 

in terms of Papkovitch-Neuber potential functions is (Aderogba 1977) 

2 F k  = (lk0k+ILl lklk),j-2@jk7 pk = @ l k . l >  (3. la,  b)  
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in which $ok and $lk ( k ,  1 = 1,  2, 3) are respectively harmonic vector and dyadic fields ; 
that is, each satisfies Laplace's equation. Cartesian tensor fields (?& p k )  take their 
definitions from the relations (summation convention on repeated indices) 

(3.2 a, b) 

or equivalently 5, = i k i j  :v, Pk = i k * P .  (3.3 a, b) 

Multiple dot products are to be performed in the order prescribed by the nesting 
convention (Chapman & Cowling 1970). Here ik ( k  = 1,2,3) is a unit vector parallel 
to the xk direction. Relations similar to (3.2) and (3.3) may be written for the 
velocity-gradient dyadic and its components, namely 

v = i j  i k  &ky P = i k  Pk,  

VV = il i, ik &, ( v j k ,  = ik i, ij( - ) V V ) ,  (3.4) 

where denotes a triple dot product. To proceed from (3.1) to the unique solutions 
of (2.15)-(2.22) requires constructing potential functions $ok and $jk possessing forms 
necessary for satisfaction of the prescribed boundary conditions. The following 
theorems prove useful in constructing such potential functions. 

(i) If @ is a biharmonic function, then the function 

q5 = 2@-z,~V2Qdz1 (3.5) 

is harmonic. 

conclusion that the function 
(ii) If q5 is harmonic then z k  q5 is biharmonic. This together with (3.5) leads to the 

zk$-zlJ$,kdzl  (k * l )  

is also harmonic. 

(in a hybrid Cartesian-tensor notation) by the relations 
(iii) The biharmonicity of Q implies the harmonicity of functions X and Y defined 

2 

x = 2 2 k  @ - z k  Z1 I v2@ dXl-%, @, k dz, +zf 1 (v2@), k &1-z, (v2@), k dz,, 

and 

2 2 2 + 22, # s (v2@), k dz1+ X: s V2@ dz, + 22: 1 @, kk  dz, 

- 22, x k  [ (v2@), dz, - 22, @, kk dz, - Z, f V2@ dx, 

- Z f r  (v2@), k t  dz, + 32: (Vz@), kt dz, - 3X, (v2@), kk dX, 

3 

s' r 
(no sum on k). 

Here and throughout the paper, all constants and functions of integration are to be 
suppressed when evaluating the integrals appearing in these expressions. Notationally, 
jn ( ) dz, denotes the n-tuple integral with respect to z1 ; explicitly, 

CI-J 
n times n times 



152 A .  Falade and H .  Brenner 

The only departure from this convention occurs for the case of a single integral, which 
retains its customary representation ( ) dxl. 

(iv) If # is harmonic, so also is 
2 

= X $ # - 3 X i X 1  4, k dX1-32, X1 s$ dX1+ 3x8 X; s #, kkdXl 

2 s 3 

+3x; 4, k dx1-3Xk #, kk dx1-3x1 [ 4, k dxl 

The first two of these theorems were enunciated by Aderogba & Chou (1984), while 
the remaining two may be deduced by the repeated application of the former. 

These theorems provide the Ansatz for solving (2.13)-(2.22). Solutions for Ql, V,, 
and Q3 will be presented separately. To facilitate comparison of our results with those 
of Hirschfeld et al. (1984), we repeat here the definition of their normalized non- 
dimensional wall-effect velocity tensors, namely 

jwkl =-6xjVkl(-1,0,0), jWkl,m =-6njvkl,m(-i ,0,  0). 

The argument ( - 1 ,  0 , O )  denotes evaluation a t  the Stokeslet position. 

3.1. Solutions for  V,, 
3.1.1. Zeroth-order field of V,, 

The unbounded flow field (oVO,oPO) generated by a Stokeslet of unit strength 
located at ( - 1 , 0 , O )  and oriented in the x1 direction is well known (Happel & Brenner 
1965; Aderogba 1977). This field is generated from (3.1) by choosing the potential 
functions 

(3.6) 
a S a  

llr0l = jj? llrj1 = + (j = 1,2,3),  

with 6,, the Kronecker delta, R = {(x,+ 1)2+xi+xt}: and a = -(4n)-l. I n  turn, the 
reflection (2.21) and (2.22) of this field from the plane x, = 0 can be obtained by the 
following choices for $ol and yiml:  

(3.7) 

where R' = {(xl - 1)2 + xz + 23:. 

its gradient a t  ( - 1,0,0) to obtain 
We substitute (3.7) into (3.1) and evaluate the resulting wall-effect dyadic oTl and 

0 w:l = i? Owl, 1 = Owl, 2 = O % l ,  3 = -A' (3.8) 

All other components of oyl and 

following velocity-gradient distribution : 

are zero at ( -  1,0,0). 
On the plane x1 = 0 the combined zeroth-order fields ,V = , V O + , ~  provide the 

6x2 a 62, a 
OVl,,, = 07 0 ~ 2 1 , l  = F )  o h , , ,  = F 9  (3.9) 

where R = (1 +xi + x$. 
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3.1.2. First-order field of V,, 
The potential functions satisfying the prescribed boundary conditions 

3axi 3x2 x 
= on x1 .= 0, (3.10 

1Vll = 0, lV21 = F ,  R5 

deriving from (2 .16~)  and (3.9) are 

(3.11 
2 

R'3 ' 
0, = 3 where 

The wall-effect dyadic engendered by (3.11) has as its only non-zero component 

lW1, = 8. ( 3 . 1 2 ~ )  

All components of Wjl, (i, 1 = 1 , 2 , 3 )  vanish except for the pairt 

lW21,2  = &> lW31,3 =-&. i3.12 b)  

Furthermore, evaluation at x1 = 0 yields the velocity dyadic gradients 

Vll, = 3012: (5R-7 - R-5 ), V2,, , = 6m2(5x; IF7 - IF5), VSl, = 3004 x3 IF7. 
(3.13) 

3.1.3. Second-order field of V,, 
We substitute (3 .13)  and (3 .9)  into ( 2 . 1 8 ~ )  to  obtain 

V2, = @x: ( 4 E 5  - 152; 
(3 .14)  

2Vll = -:ax: (R-5+5R-7), 

V,, = - !fax: x3 E-5 

on x1 = 0. Appropriate choices of potential functions ensuring satisfaction of (3 .14)  
are 

(3.15 a )  

(3.15b) 

( 3 . 1 5 ~ )  

t In arriving at (3.12) and other similar results, use has been made of the fact that at ( -  1 , 0,O) 

(R')-mdzl = { ( i - - m ) ( Z - - m )  . . . ( ~ ~ - - m ) 2 ~ - ~ } - ' ( - 1 ) ~  form>%. 
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where 

We substitute (3.15) into (3.1) and evaluate the resulting velocity dyadic and its 

2w11  = %39 2 w , 1 , 1  = -= 512' ZW21, 2 = &hj ZKl, 3 = -A' (3.16) 

gradient a t  ( -  1 ,  0 , O ) .  This yields 

All other components of W,, and W,l, are zero. 

3.2. Solutions for V,, 
3.2.1. Zeroth-order field of V,, 

direction has as its generating potential functions 
The fundamental field T2 created by a Stokeslet a t  ( - 1,0,0) oriented in the x, 

(3.17) 

The reflection of this field from the plane x1 = 0 is described by the potential functions 

- 2ax2 -a 
@02 = @32 = 0, $kl2 = R'3 @22 = R" (3.18) 

Tensor constants y.2 and W52, 
as their only non-zero components 

(j, k = 1 , 2 ,  3) associated with the reflected field have 

o c 2  = *? O V 2 , 2  = o J G 2 . 1  = A *  (3.19) 

On x1 = 0 the combined zeroth-order field gives the following velocity-gradient 
distribution for F2, : 

oP& = 0, oV22,, = 6a~:R'-~, oV,2,1 = 6~x,x,R'-~.  (3.20) 

3.2.2. First-order field of V,, 
The algebraic detail required to calculate this first-order perturbation field (as well 

as the subsequent second-order field of V,2), though straightforward in principle, 
proved quite tedious in execution. Indeed, the calculations were virtually an order 
of magnitude less tractable, and the resulting algebraic formulas concomitantly 
more unwieldy, than those required for the more symmetrical (indeed axisymmetrical) 
fields ql, for which the Stokeslet was oriented normal to the wall. To avoid presenting 
these excessively long formulas, we will therefore suppress all algebraic detail, 
proceeding directly to a summary of the final results obtained. 

After establishing that @32 = 0, and obtaining the non-zero expressions for the 
remaining potential functions @A2 ( A  = 0, 1 , 2 )  satisfying the requisite boundary 
conditions, it was found that at ( - 1 , 0 , O )  the only non-zero components of ,W,, and 
lWj2, were respectively 

lK2 = % and lW12 .2  = E* (3.21) 

3.2.3. Second-order field of V,, 
Again, @32 = 0 was the only potential function of the four @A2 that  was eliminated 

from further consideration. This eventually resulted in the following non-zero 
components of W,, and 

z w 2 2  = E* 2 w , 2 , 1 =  -&* 2W12.2 = *. (3.22) 

J$$2, at ( - 1 , 0,O) : 
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3.3. Solutions for V,, 
3.3.1. Zeroth-order field of V,, 

( - 1,0,0) and oriented in the z3 direction admits the potential functions 
Using (3.1), the fundamental field oq3 of an unbounded Stokeslet situated at  

$03 = O ,  $j3 = J2a ' (3.23) 

In turn, the reflection of this field from the plane x1 = 0 is the field arising from the 
potential functions 

(3.24) 

Resulting non-zero components of the wall-effect dyadic at ( - 1,0,0) engendered by 
(3.24) and its gradients are 

0%3 = &, O q % 3  = O w 3 . 1  = &' (3.25) 

On z1 = 0 the velocity-gradient distribution oV,2, 
fields is 

of the combined zeroth order 

F3, = 0, oV23, = 6ax2 x3 RP5, ; = 6ax; E-5. (3.26) 

3.3.2. First-order field of V,, 
Here again, all algebraic details will be suppressed in the interests of brevity. All 

of the $A3 ( A  = 0,1,2,3 are here required to satisfy the boundary conditions required 
of V13, V,, and G3. A t  ( - 1, 0 , O )  the wall-effect dyadic and its gradient are found 
to possess the following non-zero components : 

l&S=%, 1K3,3=&, (3.27) 

all other components being zero. 

3.3.3. Sewnd-orderfield of V,, 
The boundary conditions demanded of V,, require all four potential functions kA3. 

Resulting non-zero wall-effect coefficients eventually obtained upon evaluation at 
(-l,O,O) are 

Zw33 = %, 2w13, 3 = &, ZW33, 1 = -&* (3.28) 

4. Results and discussion 
It follows from the results of $3 that the wall-effect tensors W,, and qk, I of 

Hirschfeld et al. (1984) can be expressed asymptotically, either in the respective forms 

w,, = 0% Y -l+ lC,, + SC,, Y + O(Y2) (4.1) 

and w,,,, = oD,klY-2+1D,,,Y-1+2D,,1+O(Y), (4.2) 

or, since y = l-p, in the equivalent forms cited in the Abstract. Coefficients &',, 
and rD,kl ( n  = 0,1,2) are tabulated as the rational fractions appearing in tables 1 
and 2 respectively. Coefficients failing to appear explicitly in these tables are 
identically zero. ' 

Tables 1 and 2 have been used to compute values of the non-zero components of 
W,, and W,,, I in the range 0.90 < p < 0.99. These approximate asymptotic values 

PLM 164 6 
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1 2 

1 1 8 & &  
2 2 & & #  
33 & #t 

Preliminary announcements (Hirschfeld et d. 1984; Brenner 1984) of present results incorrectly 
give the 2C33 coefficient as &, rather than as the correct value of 3 here tabulated. 

TABLE 1 .  Coefficients nCjk for use in (4.1) from n = 0, . .., 2. For j =+ k, nC,, = 0. 

1 2 
-22 

j k x .  
111 +3 0 612 

212 -a 32 d & 
22 1 t 0 -- 1024 

122 t ii i& 
2% 133 t i 
-A 1034 -P 313 -& 32 04 
-_BL 33 1 t 0 512 

TABLE 2. Coefficients nD,kl for use in (4.2) from n = 0, ..., 2. All components 
of nD,kl that do not appear explicitly are zero-valued. 

are compared in table 3 with the ‘exact’ numerical values tabulated by Hirschfeld 
et al.,  the latter of which are believed to be correct to the last significant figure shown. 
Agreement is quite good, especially at those /?-values closest to unity. Further 
improvement in accuracy of the asymptotic wall-effect values would require compu- 
tation of higher-order terms in n - an algebraically very tedious and lengthy exercise. 

Hirschfeld et al. demonstrated that the wall-effect tensors possess the properties 

wjk, j  = (4.3) 

and y k . 3 = -  wkj. 3’ (4.4) 

These relations are obviously consistent with the individual coefficient values 
explicitly and implicitly tabulated in tables 1 and 2, and separately consistent for 
each n-value of nCjk  and n D j k l .  

4.1. The region external to a cylinder 
The utility of knowledge of w j k  and y k ,  I versus /3 in calculating wall effects to O ( K ~ )  
in the interior of a circular cylinder has been thoroughly discussed by Hirschfeld et al. 
(1984). Additionally, i t  should be mentioned that (4.1) and (4.2) -together with the 
coefficients tabulated in tables 1 and 2 - simultaneously provide the appropriate 
Stokeslet wall-effect tensors for a particle located in the infinite fluid-filled space 
external to a solid circular cylinder, provided that y ( = 1 -/?) is replaced by - y 
(= /?- 1) in (4.1) and (4.2), and that the nD,kl values for the external case are taken 
to be opposite in algebraic sign from those tabulated in table 2. This appears to be 
the first instance in which such ‘exterior’ wall effects have been addressed. 
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B 
9.90 
0.91 
0.92 
0.93 
0.94 
0.95 
0.96 
0.97 
0.98 
0.99 

asymptotic 
approximation 

(4.1) 
11.5418 
12.79074 
14.352 19 
16.36006 
19.03758 
22.786523 
28.410469 
37.784414 
56.533359 

112.78230 

‘exact’ 
value 

11.5419 
12.79080 
14.35224 
16.36008 
19.03759 
22.786530 
28.41047 1 
37.7844 15 
56.533360 

112.78232 

asymptotic 
approximation 

(4.1) 
6.351 
6.967 
7.739 
8.734 

10.064 
11.929 
14.733 
19.4107 
28.7764 
56.8921 

(b)  

‘exact’ 
value 

6.343 
6.961 
7.734 
8.730 

10.061 
11.927 
14.731 
19.4100 
28.7761 
56.8920 

asymptotic 
approximation 

B (4.2) 

0.90 56.1972 
0.91 69.3917 
0.92 87.8379 
0.93 114.7432 
0.94 156.1973 
0.95 224.9473 
0.96 351.50976 
0.97 624.94726 
0.98 1406.1973 
0.99 5624.9472 

Wl2.2 

‘exact’ 
value 

56.1957 
69.3905 
87.8370 

114.7426 
156.1969 
224.9470 
35 1.50964 
624.94721 

1406.1973 
5624.9491 

asymptotic 
approximation 

(4.2) 

- 26.569 
-33.010 
-42.038 
-55.240 
-75.632 
- 109.5381 
-172.1162 
-307.6631 
-695.9443 
- 2798.2881 

‘exact’ 
value 

- 26.567 
- 33.008 
-42.036 
-55.237 
- 75.630 
- 109.5364 
-172.1148 
- 307.6620 
- 695.9436 

-2798.2899 

asymptotic 
approximation 

5.87 
6.49 
7.27 
8.27 
9.60 

11.476 
14.285 
18.969 
28.3419 
56.4639 

(4.1) 
‘exact’ 
value 

5.91 
6.52 
7.30 
8.29 
9.62 

11.488 
14.293 
18.974 
28.344 1 
56.4645 

asymptotic 
approximation 

(4.2) 

27.69 
34.29 
43.514 
56.967 
77.694 

112.069 
175.351 
312.07 
702.69 

28 12.07 

q 3 . 1  

‘ exact ’ 
value 

27.72 
34.32 
43.534 
56.982 
77.703 

112.072 
175.347 
312.06 
702.68 

2812.04 

asymptotic 
approximation 

B (4.2) 
0.90 32.41 
0.91 39.47 
0.92 49.28 
0.93 63.49 
0.94 85.22 
0.95 121.00 
0.96 186.39 
0.97 326.62 
0.98 724.280 
0.99 2854.749 

‘exact’ 
value 

32.34 
39.41 
49.23 
63.44 
85.18 

120.97 
186.36 
326.60 
724.267 

2854.743 

asymptotic 
approximation 

(4.2) 
29.6279 
36.38 14 
45.7998 
59.5036 
80.5654 

115.4092 
179.3934 
31 7.2842 
7 10.2529 

2826.6592 

‘exact ’ 
value 

29.6291 
36.3828 
45.8013 
59.5051 
80.5670 

115.4106 
179.3498 
317.2852 
7 10.2536 

2826.6593 

asymptotic 
approximation 

28.0 
34.5 
43.8 
57.2 
78.0 

112.34 
175.62 
312.34 
702.97 

281 2.34 

(4.2) 
‘exact’ 
value 

27.6 
34.2 
43.5 
56.9 
77.7 

112.12 
175.43 
312.20 
702.87 

2812.29 

TABLE 3. Comparison of asymptotic values derived (a) from (4.1) and ( b )  from (4.2) with ‘exact’ 
values taken from Hirschfeld et al. (1984) in- the range 0.90 < B < 0.99. 
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I hP I 

Cylinder boundary ' 
FIGURE 2. Stokeslet singularity S near the boundary of a non-circular cylinder. 

4.2. Non-circular cylinders 

Minor modifications permit the present scheme to be adapted to the case of 
asymptotic wall effects for cylinders of non-circular cross-section. I n  this context we 
consider the cylinder whose cross-section in the plane z = const is bounded by the 
generator 

Y =fW, (4.5) 

where f is some analytic function. Here (x, y, z )  denote a rectangular system of 
(dimensional) Cartesian coordinates with origin a t  0 in figure 2. It will be assumed 
henceforth that the cylinder boundary (4.5) is closed, though easily achieved 
circumstances exist in which the subsequent theory remains valid even if this is not 
the case. 

Let S = (xs, y s )  (with zs = 0) denote the position of the Stokeslet, and P = (xp, y p )  
that point on the boundary (4.5) lying nearest to  S. Specifically, xp is that  value of 
x (wit,hin the domain of variation of x over the curve (4.5)) that minimizes the distance 
function 

lhWI = { ( ~ - x s ) 2 + [ f ( x ) - Y s 1 2 } : ;  (4.6) 

I h@p) I = I h, I, say, = min I h ( x )  I .  (4.7 ) 

I h, I = ( ( X P  -"d2+ [ f @ P )  -Ysl21: (4.8) 

of the distance of the Stokeslet from the eylinder wall. (Subsequently we will assign 
an algebraic sign to hp. )  Naturally, as indicated in figure 2, the line segment SP 
intersects the boundary curve (4.5) orthogonally. 

Provided that f "(x,) + 0, the magnitude R, of the local radius of curvature of the 
cylinder a t  P is given by the well-known expression 

that is, for a prescribed S and cylinder-generating function f(x), 

Corresponding to this value of xp is the magnitude 

(4.9) 
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This radius will always be taken to be a non-negative-definite quantity. The centre 
of curvature C = (xc, yc) is situated at the point 

xc = 2 p + ( z s - 2 p ) y - l ,  ( 4 . 1 0 ~ )  

Yc = YP+(Ys-YyP)Y-l> (4.10b) 

where y is the algebraically signed scalar 

(4.11) 

Point C lies on the concave side of the generator at P. In figure 2, points P, S and 
C all lie along the same straight line. Our implicit convention regarding the 
algebraically signed scalar h, is that h, > 0 when S in figure 2 lies on the concave 
side of the generator at P, and conversely; that is, h, is respectively positive or 
negative according as the Stokeslet is ‘internal’ or ‘external’ to the cylinder. 

It will prove convenient to simultaneously rotate, translate and non-dimensionalize 
the (2, y)-coordinate system to produce a new Cartesian system (xl, z2) defined by the 
linear transformation 

(4.1 2 a) 

(4.12b) 

(The denominator of each of the above terms is h$. They are here written out 
explicitly so that subsequent cancellation with comparable terms arising in the 
numerators will be evident.) Locations of pertinent points in the (xl, z,)-system are 
as follows : 

P =  ( O , O ) ,  AYE ( - l , O ) ,  c= ( - 7 - 1 , O ) .  (4.13) 

In  this Cartesian system the locations of P, S and C are now the same as for the 
circular-cylinder (xl, 2,)-case in $2. Indeed, it was to achieve precisely this equivalence 
that motivated the coordinate transformation (4.12). 

In this dimensionless Cartesian system the equation of the circle of curvature that 
is tangent to the generating curve at P and is centred at C is 

( X - Z p )  (Ys- YP) - (Y -Y,) (2s - 2,) 
(%T+)2 + (Ys -YP)2 

- x 2  = 

(Z1--y-’)2+2; = 7 - 2 ,  (4.14) 

exactly as in the case of the circular cylinder (cf. (2.5)). As follows from the definition 
of the circle of curvature, to terms of lowest orders in y the local portion of the 
cylinder-generator curve (4.5) immediately proximate to P necessarily coincides with 
the small-( y I series expansion of (4.14); that is, the cylinder surface is locally 
described to terms of the first order in y by the equation (cf. ( 2 . 1 1 ~ ) )  

5 1  - - h x : + o ( Y 2 ) ,  (4.15) 

exactly as in the circular-cylinder case. 
Since the fluid-velocity field is required to satisfy the boundary condition v = 0 

on the surface (4.5), it follows immediately from our prior analysis of the comparable 
circular-cylinder case that the zeroth- and first-order wall-effect tensors W and W 
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FIQURE 3. Stokeslet singularity S near the boundary of an elliptic cylinder of semiaxes a and b. 

for the non-circular-cylinder case are given quite generally by precisely the same 
formulas as for the circular cylinder; explicitly (cf. (4.1)), 

and 

Here y is given for the non-circular case by (4.1 l ) ,  whereas the required four numerical 
tensors oc;rk, . . . , 1Djkl. are those given in tables 1 and 2 (cf. the remarks a t  the end 
of $4.1 when y < 0, 1.e. when the Stokeslet S shown in figure 2 lies instead on the 
convex side of the curve at  P, corresponding to wall effects when the Stokeslet lies 
in the region external to the non-circular cylinder). Calculation of the higher-order 
wall-effect tensor W in the preceding expression, though straightforward in principle, 
would call for extraordinary algebraic effort involving taking account of the 
'curvature of the curvature'. 

The non-dimensional wall-effect formulas (4.16) and (4.17) permit immediate 
calculation (Hirschfeld et al. 1984) of the Stokes force F and torque G, on a particle 
moving in close proximity to a non-circular cylindrical boundary. In using the 
Hirschfeld et al. formulas for F and G,, i t  is necessary to use our radius of curvature 
R, in place of their circular-cylindrical radius Ro. 

By way of example, we consider the elliptic cylinder (figure 3) 

(;)z+(g = 1 ,  (4.18) 
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corresponding to the functional dependence 

(4.19) 

in (4.5). For definiteness the Stokeslet will be supposed to lie along the x-axis at the 
point (xs, y s )  = (c,  0) with c > 0,t and such that 

l a - c l / a  + 1; (4.20) 

the latter assures proximity of the Stokeslet to the wall. Moreover, again for 
definiteness, it will be further supposed that 

a / b  < 1. (4.21) 

In  the present example (4.6) becomes 

h2(x) = ( z - c ) ~ +  - (a2-x2) .  (Y 
Since points x lying on the boundary of the ellipse span the region -a < x < a, and 
given the inequality (4.21), the function lh(x)l attains its minimum value at the 
endpoint x = a. Hence (x,, y,) = (a,O), whence, from (4.8), h, = a - c  - the algebraic 
sign having been chosen in accord with our concave/convex convention for the 
Stokeslet location. Straightforward calculation via (4.9) of the radius of curvature 
at P gives R, = b 2 / a .  (In view of the assumed inequality (4.21), this makes 
R, 2 b >, a, with equality holding only for the circular-cylindrical case a = b. Thus, 
as shown in figure 3, R, exceeds both b and a in magnitude.)$ Hence, from (4.11), 

a 2 a - c  
= (J a’ (4.22) 

for the elliptic-cylinder case. Given the inequalities (4.20) and (4.21), it is indeed true 
in present circumstances that I yl 4 1. Use of (4.22) in (4.16) and (4.17) furnishes the 
lower-order wall-effect tensors for both the internal and external elliptic-cylinder 
cases. 

This work was begun while A.F. was on sabbatical leave from the University of 
Lagos. He is grateful to the latter for support as well as to MIT for providing a 
hospitable environment during his stay there. 
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